
 Numato Lab

Controlling Numato Lab USB GPIO

Modules using Python

2024

Numato Lab USB GPIO Module - Python

Numato Lab

2 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

Table of Contents

Contents

1. Introduction ... 3

2. Applicable products ... 3

3. Prerequisites .. 3

4. Fundamentals of communicating to the device through Python .. 3

4.1. Opening the serial port .. 4

4.2. Sending commands to the device .. 5

4.3. Reading a response from the device ... 5

4.4. Closing the port .. 5

5. Python sample code and result ... 6

http://www.numato.com/

Numato Lab USB GPIO Module - Python

Numato Lab

3 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

1. Introduction

Python is a popular programming language. Python allows programmers to write

applications effortlessly, to create scripts and applications for automation and other

purposes. Python works on multiple operating systems including Windows, Linux, and

Mac too. Python can work with Serial Ports when appropriate modules are installed, and

this makes Python capable of communicating with Numato Lab’s USB devices.

Numato Lab’s USB GPIO modules are great products for controlling electrical and electronic

devices remotely from a PC or Mobile Device over USB link. Ease of use and wider operating

system compatibility are the primary goals behind this product’s design. USB GPIO modules

(and other GPIO modules as well) are primarily used for some sort of automation such

as Industrial Automation and Factory Automation. This article discusses various aspects

of using Python for writing scripts/applications to control Numato Lab’s USB GPIO

modules so that the reader will become familiar with the basic concepts with the help

of examples.

2. Applicable products

• All Numato Lab USB GPIO Modules

3. Prerequisites

The reader is expected to be familiar with Python and the commands supported by the

device. More information about the supported commands is available in the product user

manual.

Python3 and pySerial module for Python must be installed on the target machine. More

information on how to install these applications can be found in the links below.

• How to install Python

• How to install pySerial

Once the python3 is installed, the pip library is automatically installed, pySerial can be

installed using the pip. Once all the above prerequisites are installed, we can start

writing the Python code.

4. Fundamentals of communicating to the device through Python

Just like most other USB-based products from Numato Lab, the USB GPIO devices present

themselves as a simple Serial Port to the host machine. This serial interface allows the

http://www.numato.com/
https://www.python.org/
https://numato.com/relay-modules/usb-relay/
https://numato.com/relay-modules/usb-relay/
https://www.python.org/downloads/
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation
http://www.numato.com/

Numato Lab USB GPIO Module - Python

Numato Lab

4 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

device to be programmatically controlled by using APIs provided by the Operating System.

Be it Windows, Linux, Mac, Android, or any other operating system, the behavior is the

same. The only requirement is that the host operating system supports USB CDC devices,

which almost all popular operating systems do.

This article uses the ‘pySerial’ package which is one of the popular packages and it offers

some intuitive and easy-to-use APIs.

Interacting with a USB GPIO device programmatically can be broken down into the following

steps.

1. Open the port corresponding to the device.

2. Send commands to the device. The commands are ASCII human-readable strings.

3. Read back the response from the device where applicable. The responses from the

device are also human-readable ASCII strings.

4. Close the port when the operation is complete.

The following sections will discuss in detail each of these steps.

4.1. Opening the serial port

Before the port can be opened, the port name for the corresponding device must be

located. On Windows, this can be usually done by visiting the Device Manager and

looking up the port name manually. Here is the example image below, the port name

for the GPIO module would be COM15. On Linux and Mac OSX, the attached devices

should be visible in the /dev directory.

Once the port name is figured out, opening the port is very easy. The very first step is to

load the Serial Port module and create an object that represents the serial port

corresponding to the device. The following code does this. The exact value of the baud

rate doesn’t matter if it is a legal value. Also, use device names such as COM15 on

Windows and device node names such as /dev/ttyACM0 on Linux/Mac.

http://www.numato.com/
https://pyserial.readthedocs.io/en/latest/pyserial.html#pyserial

Numato Lab USB GPIO Module - Python

Numato Lab

5 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

//On windows use the port name such as COM15 and on Linux/Mac, use the device node

name such as /dev/ttyACM0

4.2. Sending commands to the device

Once the port corresponding to the device is opened successfully, commands can be

set to the device using the write() method provided by the serial port package.

The write() method accepts a string contains the command and is sent to the device.

Since the device expects the command to end with a Carriage Return (hex value 0x0A),

it is important to add a “\r” at the end of all commands. Make sure the Serial() method

is called on the port object and the port are open before calling the write() method.

The flushInput() method discards all input buffer content.

Depending on the exact command sent, the device may or may not respond with some

data. This data can be captured by reading the port immediately after sending the

command.

4.3. Reading a response from the device

The serialport package provides functions like read, readline & readuntil to receive data

over the serial port. The data returned is in bytes, converted to a string by using the

decode() method. The result is printed using the print() method. For more details on

how to use read, readline or readuntil refer to the pySerial API.

4.4. Closing the port

Finally, a previously opened port can be closed by using the close() method.

http://www.numato.com/
https://pyserial.readthedocs.io/en/latest/pyserial_api.html

Numato Lab USB GPIO Module - Python

Numato Lab

6 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

5. Python sample code and result

The following complete Python code will open the port and send commands to the

GPIO device to turn on GPIO 0 and turn it off after a few seconds. Any other command

described in the product user manual can be sent to the device the same way.

#Import required libraries

import serial

import time

Opening Serial port

serPort = serial.Serial("COM15",baudrate = 9600, timeout=1)

#Set GPIO #0 to High

serPort.flushInput()

serPort.write(b"gpio set 0\r")

response = serPort.read(20)

print(response.decode())

#Read GPIO #0 Status

serPort.flushInput()

serPort.write(b"gpio read 0\r")

response = serPort.read(20)

print(response.decode())

print("\nDelay of 5 seconds...\n")

time.sleep(5)

#Set GPIO #0 to Low

serPort.flushInput()

serPort.write(b"gpio clear 0\r")

response = serPort.read(20)

print(response.decode())

#Read GPIO #0 Status

serPort.flushInput()

serPort.write(b"gpio read 0\r")

response = serPort.read(20)

print(response.decode())

Closing Serial port

serPort.close()

http://www.numato.com/

Numato Lab USB GPIO Module - Python

Numato Lab

7 ©YEAR NUMATO SYSTEMS PVT LTD

www.numato.com

The image below shows the above script running on Windows. Please note the data

returned by the device. The device echoes everything that is sent to it in addition to the

command prompt and optional result of operation.

http://www.numato.com/

